Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 166: 103794, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003467

RESUMO

We characterized the genetic structure of 609 strains of Pyricularia oryzae, the fungal pathogen causing rice blast disease, in three main regions in Vietnam using microsatellites (SSR) markers. From the 447 distinct multilocus genotypes identified, six genetic clusters were defined, all of them showing elevated genetic and genotypic diversities. Four of these clusters were related to rice-attacking lineages already described at the worldwide scale, whereas the two remaining clusters were endemic to Vietnam. Strains were unevenly distributed into the six clusters depending on their groups of rice variety (indica / japonica) or type of varieties (traditional / modern) of origin, but none of the clusters was specifically related to these two factors. The highest diversity of blast population was found in Northern mountainous area, and the lowest in Red River Delta in both terms of genetic diversity and gene diversity. Hierarchical AMOVAs confirmed that all three factors considered (rice variety group, type of variety origin and geography) significantly contributed to the population structure of P. oryzae in Vietnam, with highest contribution from rice variety group. Mating types were unevenly distributed among clusters. Combined with results of female fertility and linkage disequilibirum, we hypothesized that clonal reproduction probably occurred in all clusters, but that sexual reproduction likely took place at least in some restricted areas in the Northern mountainous area for strains belonging to the cluster related to the previously described recombinant lineage (worldwide lineage 1). Our study pictures the genetic diversity, population structure and reproductive mode of the blast fungus in central and north Vietnam, and shows that the observed population structure is explained by several factors, the most important one being the variability of rice variety. All these new information might help for elaborating appropriate strategies to controlling the blast disease.


Assuntos
Magnaporthe , Oryza , Vietnã/epidemiologia , Magnaporthe/genética , Variação Genética/genética , Pandemias , Oryza/microbiologia
2.
Plant Mol Biol ; 110(3): 269-285, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969295

RESUMO

External application of ethanol enhances tolerance to high salinity, drought, and heat stress in various plant species. However, the effects of ethanol application on increased drought tolerance in woody plants, such as the tropical crop "cassava," remain unknown. In the present study, we analyzed the morphological, physiological, and molecular responses of cassava plants subjected to ethanol pretreatment and subsequent drought stress treatment. Ethanol pretreatment induced a slight accumulation of abscisic acid (ABA) and stomatal closure, resulting in a reduced transpiration rate, higher water content in the leaves during drought stress treatment and the starch accumulation in leaves. Transcriptomic analysis revealed that ethanol pretreatment upregulated the expression of ABA signaling-related genes, such as PP2Cs and AITRs, and stress response and protein-folding-related genes, such as heat shock proteins (HSPs). In addition, the upregulation of drought-inducible genes during drought treatment was delayed in ethanol-pretreated plants compared with that in water-pretreated control plants. These results suggest that ethanol pretreatment induces stomatal closure through activation of the ABA signaling pathway, protein folding-related response by activating the HSP/chaperone network and the changes in sugar and starch metabolism, resulting in increased drought avoidance in plants.


Assuntos
Manihot , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Secas , Etanol/farmacologia , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Estresse Fisiológico/genética , Açúcares/metabolismo , Água/metabolismo
3.
PLoS One ; 16(9): e0255470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499670

RESUMO

TBR225 is one of the most popular commercial rice varieties in Northern Vietnam. However, this variety is highly susceptible to bacterial leaf blight (BLB), a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which can lead to important yield losses. OsSWEET14 belongs to the SWEET gene family that encodes sugar transporters. Together with other Clade III members, it behaves as a susceptibility (S) gene whose induction by Asian Xoo Transcription-Activator-Like Effectors (TALEs) is absolutely necessary for disease. In this study, we sought to introduce BLB resistance in the TBR225 elite variety. First, two Vietnamese Xoo strains were shown to up-regulate OsSWEET14 upon TBR225 infection. To investigate if this induction is connected with disease susceptibility, nine TBR225 mutant lines with mutations in the AvrXa7, PthXo3 or TalF TALEs DNA target sequences of the OsSWEET14 promoter were obtained using the CRISPR/Cas9 editing system. Genotyping analysis of T0 and T1 individuals showed that mutations were stably inherited. None of the examined agronomic traits of three transgene-free T2 edited lines were significantly different from those of wild-type TBR225. Importantly, one of these T2 lines, harboring the largest homozygous 6-bp deletion, displayed decreased OsSWEET14 expression as well as a significantly reduced susceptibility to a Vietnamese Xoo strains and complete resistance to another one. Our findings indicate that CRISPR/Cas9 editing conferred an improved BLB resistance to a Vietnamese commercial elite rice variety.


Assuntos
Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Xanthomonas/fisiologia , Sistemas CRISPR-Cas , Resistência à Doença/genética , Suscetibilidade a Doenças , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética
4.
Plants (Basel) ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071570

RESUMO

Rice tolerance to salinity stress involves diverse and complementary mechanisms, such as the regulation of genome expression, activation of specific ion-transport systems to manage excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration into the inner tissues of the plant. These complementary mechanisms can act synergistically to improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at different developmental stages and in different environments. This approach presupposes the identification of salinity tolerance QTLs associated with different mechanisms involved in salinity tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study (GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.

5.
PLoS Genet ; 17(6): e1009594, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097698

RESUMO

The number of grains per panicle is an important yield-related trait in cereals which depends in part on panicle branching complexity. One component of this complexity is the number of secondary branches per panicle. Previously, a GWAS site associated with secondary branch and spikelet numbers per panicle in rice was identified. Here we combined gene capture, bi-parental genetic population analysis, expression profiling and transgenic approaches in order to investigate the functional significance of a cluster of 6 ANK and ANK-TPR genes within the QTL. Four of the ANK and ANK-TPR genes present a differential expression associated with panicle secondary branch number in contrasted accessions. These differential expression patterns correlate in the different alleles of these genes with specific deletions of potential cis-regulatory sequences in their promoters. Two of these genes were confirmed through functional analysis as playing a role in the control of panicle architecture. Our findings indicate that secondary branching diversity in the rice panicle is governed in part by differentially expressed genes within this cluster encoding ANK and ANK-TPR domain proteins that may act as positive or negative regulators of panicle meristem's identity transition from indeterminate to determinate state.


Assuntos
Anquirinas/genética , Oryza/genética , Sequências Repetitivas de Ácido Nucleico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Locos de Características Quantitativas
6.
PLoS One ; 14(7): e0219274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283792

RESUMO

Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese landraces are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.


Assuntos
Oryza/genética , Folhas de Planta/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Vietnã
7.
PLoS One ; 9(5): e98287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879307

RESUMO

BACKGROUND: The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. RESULTS: The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. CONCLUSIONS: To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.


Assuntos
RNA Helicases DEAD-box/genética , Nicotiana/genética , Nicotiana/metabolismo , Estresse Oxidativo/genética , Fotossíntese/genética , Pisum sativum/enzimologia , Salinidade , Clorofila/metabolismo , Clonagem Molecular , RNA Helicases DEAD-box/metabolismo , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Germinação/genética , Pisum sativum/genética , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Potássio/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Sódio/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia
8.
Plant Signal Behav ; 6(3): 327-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21336027

RESUMO

Pea mini-chromosome maintenance 6 (MCM6) single subunit (93 kDa) forms homohexamer (560 kDa) and contains an ATP-dependent and replication fork stimulated 3' to 5' DNA unwinding activity along with intrinsic DNA-dependent ATPase and ATP-binding activities [Plant Mol. Biol. 2010; DOI: 10.1007/s11103-010-9675-7]. Here, we have determined the effect of various DNA-binding agents, such as actinomycin, nogalamycin, daunorubicin, doxorubicin, distamycin, camptothecin, cyclophosphamide, ellipticine, VP-16, novobiocin, netropsin, cisplatin, mitoxantrone and genistein on the DNA unwinding and ATPase activities of the pea MCM6 DNA helicase. The results show that actinomycin and nogalamycin inhibited the DNA helicase (apparent Ki values of 10 and 1 µM, respectively) and ATPase (apparent Ki values of 100 and 17 µM, respectively) activities. Although, daunorubicin and doxorubicin also inhibited the DNA helicase activity of pea MCM6, but with less efficiency; however, these could not inhibit the ATPase activity. These results suggest that the intercalation of the inhibitors into duplex DNA generates a complex that impedes translocation of MCM6, resulting in the inhibitions of the activities. This study could be useful in our better understanding of the mechanism of plant nuclear DNA helicase unwinding.


Assuntos
DNA Helicases/metabolismo , Inibidores Enzimáticos/farmacologia , Pisum sativum/enzimologia , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Camptotecina/farmacologia , Cisplatino/farmacologia , Dactinomicina/farmacologia , Daunorrubicina/farmacologia , Elipticinas/farmacologia , Etoposídeo/farmacologia , Substâncias Intercalantes/farmacologia , Mitoxantrona/farmacologia , Nogalamicina , Novobiocina/farmacologia
9.
J Mol Biol ; 377(3): 691-705, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18279890

RESUMO

TWINKLE is the helicase at the mitochondrial DNA (mtDNA) replication fork in mammalian cells. Mutations in the PEO1 gene, which encodes TWINKLE, cause autosomal dominant progressive external ophthalmoplegia (AdPEO), a disorder associated with deletions in mtDNA. Here, we characterized seven different AdPEO-causing mutations in the linker region of TWINKLE and we identified distinct molecular phenotypes. For some mutations, protein hexamerization and DNA helicase activity are completely abolished whereas others display more subtle effects. To better understand these distinct phenotypes, we constructed a molecular model of TWINKLE based on the three-dimensional structure of the bacteriophage T7 gene 4 protein. The structural model explains the molecular phenotypes and also predicts the functional consequences of other AdPEO-causing mutations. Our findings provide a molecular platform for further studies in cell- and animal-based model systems and demonstrate that knowledge of the bacteriophage T7 DNA replication machinery may be key to understanding the molecular and phenotypic consequences of mutations in the mtDNA replication apparatus.


Assuntos
DNA Helicases/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Clonagem Molecular , DNA Helicases/química , DNA Primase/química , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Proteínas Mitocondriais , Modelos Moleculares , Mutação , Conformação Proteica , Relação Estrutura-Atividade
10.
Nucleic Acids Res ; 35(3): 902-11, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17251196

RESUMO

The mitochondrial replication machinery in human cells includes the DNA polymerase gamma holoenzyme and the TWINKLE helicase. Together, these two factors form a processive replication machinery, a replisome, which can use duplex DNA as template to synthesize long stretches of single-stranded DNA. We here address the importance of the smaller, accessory B subunit of DNA polymerase gamma and demonstrate that this subunit is absolutely required for replisome function. The duplex DNA binding activity of the B subunit is needed for coordination of POLgamma holoenzyme and TWINKLE helicase activities at the mtDNA replication fork. In the absence of proof for direct physical interactions between the components of the mitochondrial replisome, these functional interactions may explain the strict interdependence of TWINKLE and DNA polymerase gamma for mitochondrial DNA synthesis. Furthermore, mutations in TWINKLE as well as in the catalytic A and accessory B subunits of the POLgamma holoenzyme, may cause autosomal dominant progressive external ophthalmoplegia, a disorder associated with deletions in mitochondrial DNA. The crucial importance of the B subunit for replisome function may help to explain why mutations in these three proteins cause an identical syndrome.


Assuntos
Replicação do DNA , DNA Mitocondrial/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Complexos Multienzimáticos/metabolismo , Subunidades Proteicas/fisiologia , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase gama , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Proteínas Mitocondriais , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Moldes Genéticos
11.
J Biol Chem ; 281(34): 24647-52, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16790426

RESUMO

The human mitochondrial transcription machinery generates the RNA primers needed for initiation of heavy strand DNA synthesis. Most DNA replication events from the heavy strand origin are prematurely terminated, forming a persistent RNA-DNA hybrid, which remains annealed to the parental DNA strand. This triple-stranded structure is called the D-loop and encompasses the conserved sequence box II, a DNA element required for proper primer formation. We here use a purified recombinant mitochondrial transcription system and demonstrate that conserved sequence box II is a sequence-dependent transcription termination element in vitro. Transcription from the light strand promoter is prematurely terminated at positions 300-282 in the mitochondrial genome, which coincide with the major RNA-DNA transition points in the D-loop of human mitochondria. Based on our findings, we propose a model for primer formation at the origin of heavy strand DNA replication.


Assuntos
Sequência Conservada , DNA Mitocondrial/genética , Transcrição Gênica , Sequência de Bases , Replicação do DNA , Humanos , Modelos Genéticos , Proteínas Recombinantes/genética , Análise de Sequência
12.
Proc Natl Acad Sci U S A ; 102(2): 509-14, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15630095

RESUMO

Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus-(35)S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T(0) transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T(0) transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T(1) transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na(+) ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T(1) transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , DNA Helicases/fisiologia , Nicotiana/enzimologia , Pisum sativum/enzimologia , Cloreto de Sódio/farmacologia , Sequência de Bases , DNA Helicases/genética , Indução Enzimática , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Nicotiana/genética
13.
EMBO J ; 23(12): 2423-9, 2004 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15167897

RESUMO

We here reconstitute a minimal mammalian mitochondrial DNA (mtDNA) replisome in vitro. The mtDNA polymerase (POLgamma) cannot use double-stranded DNA (dsDNA) as template for DNA synthesis. Similarly, the TWINKLE DNA helicase is unable to unwind longer stretches of dsDNA. In combination, POLgamma and TWINKLE form a processive replication machinery, which can use dsDNA as template to synthesize single-stranded DNA (ssDNA) molecules of about 2 kb. The addition of the mitochondrial ssDNA-binding protein stimulates the reaction further, generating DNA products of about 16 kb, the size of the mammalian mtDNA molecule. The observed DNA synthesis rate is 180 base pairs (bp)/min, corresponding closely to the previously calculated value of 270 bp/min for in vivo DNA replication. Our findings provide the first biochemical evidence that TWINKLE is the helicase at the mitochondrial DNA replication fork. Furthermore, mutations in TWINKLE and POLgamma cause autosomal dominant progressive external ophthalmoplegia (adPEO), a disorder associated with deletions in mitochondrial DNA. The functional interactions between TWINKLE and POLgamma thus explain why mutations in these two proteins cause an identical syndrome.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Sequência de Bases , DNA Mitocondrial/biossíntese , Técnicas In Vitro , Dados de Sequência Molecular , Moldes Genéticos
14.
Biochem Biophys Res Commun ; 294(2): 334-9, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-12051716

RESUMO

Pea DNA helicase 45 (PDH45) is an ATP-dependent DNA unwinding enzyme, with intrinsic DNA-dependent ATPase activity [Plant J. 24 (2000) 219]. We have determined the effect of various DNA-binding agents, such as daunorubicin, ethidium bromide, ellipticine, cisplatin, nogalamycin, actinomycin C1, and camptothecin on the DNA unwinding and ATPase activities of the plant nuclear DNA helicase PDH45. The results show that all the agents except actinomycin C1, and camptothecin inhibited the helicase (apparent K(i) values ranging from 1.5 to 7.0 microM) and ATPase (apparent K(i) values ranging from 2.5 to 11.9 microM) activities. This is the first study to show the effect of various DNA-binding agents on the plant nuclear helicase and also first to demonstrate inhibition of any helicase by cisplatin. Another striking finding that the actinomycin C1 and ellipticine act differentially on PDH45 as compared to pea chloroplast helicase suggests that the mechanism of DNA unwinding could be different in nucleus and chloroplast. These results suggest that the intercalation of the inhibitors into duplex DNA generates a complex that impedes translocation of PDH45, resulting in both the inhibitions of unwinding activity and ATP hydrolysis. This study would be useful to obtain a better understanding of the mechanism of plant nuclear DNA helicase unwinding and the mechanism by which these agents can disturb genome integrity.


Assuntos
Adenosina Trifosfatases/efeitos dos fármacos , DNA Helicases/química , DNA/química , Inibidores Enzimáticos/química , Substâncias Intercalantes/química , Proteínas de Plantas/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Animais , Núcleo Celular/enzimologia , Cloroplastos/enzimologia , Cisplatino/química , Cisplatino/farmacologia , DNA/metabolismo , DNA Helicases/efeitos dos fármacos , Daunorrubicina/química , Daunorrubicina/farmacologia , Relação Dose-Resposta a Droga , Elipticinas/química , Elipticinas/farmacologia , Inibidores Enzimáticos/farmacologia , Etídio/química , Etídio/farmacologia , Substâncias Intercalantes/farmacologia , Nogalamicina/química , Nogalamicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Pisum sativum , Proteínas de Plantas/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...